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ANALYSTS OF FULLY DEVELOPED LAMINAR HEAT TRANSFER IN
THIN RECTANGULAR CHANNELS WITH HEATING ON THE
BROAD WALLS EXCEPT NEAR THE CORNERS¥
by Joseph M. Savino, Robert Siegel, and Edward C. Bittner

Lewis Research Center

SUMMARY

An analysis is presented of convective heat transfer in thin rectangular
channels such as those commonly found in nuclear-reactor fuel assemblies. The
velocity and temperature profiles are both assumed to be fully developed.
Heating takes place in the fueled region located on the broad channel sides,
but the fuel extends only part way to the corners. The short sides and por-
tions of the broad sides that are not fueled are assumed insulated. The wall
temperature distributions are shown to be strongly dependent on the spacing be-
tween the heated region and the corners. For uniform heating the maximum wall
temperature shifts rapidly from the corner to the center of the broad side as
this spacing is increased from zero to only one-half the distance between the
broad sides. With a cosine heating distribution where the peak flux is at the
Tuel edges, the wall temperature gradients are more severe than for the uniform
heating case. Tables of temperature distributions in the fluid are also given.

INTRODUCTION

Many nuclear reactors utilize assemblies of flat or slightly curved fuel
plates. For example, in figure 1 a cross-sectional view is shown of the fuel
assembly used in the NASA Plum Brook Reactor. In such an assembly approxi-
mately 97 percent of the heat is generated in the fueled portion of the plates
and only 3 percent in the unfueled portions and side plates (unpublished Lewis
report by K. J. Baumeister and H. J. Reilly). Cooling is accomplished by pass-
ing high velocity water, which also serves as the moderator, through the
channels between the plates. The local plate-temperature variations are in-
fluenced by factors such as local flow velocity, distribution of heat genera-
tion over the fueled area, distance from the inlet, heat conduction in the
channel wall, and space between the edge of the fuel loading and the corner.

A problem of particular concern is the heat transfer in the channel corners.
In this region accurate calculations of the wall temperatures are very diffi-
cult for several reasons. If the flow is turbulent, the low velocities in the
corners may give rise to a larger laminar region than exists in an ordinary
laminar sublayer, and the extent of the laminar region is difficult to define.

*Presented at the American Institute of Chemical Engineers Symposium on
Nuclear Engineering Heat Transfer, Chicago, I1l., Dec. 1962.
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Figure 1. - Cross section of the fuel assemblies used In the NASA 20 that were electrically heated on
Plum Brook Reactor. (All dimensions in inches. ) all sides. The wall temperatures at
the center of the short sides were
conslderably higher than those on the
broad sides. The corner temperatures were not measured, but they may have been
the highest temperatures even with heat conduction present in the walls.

Sparrow and Siegel (ref. 2) used variational methods to analyze laminar
heat transfer in a rectangular channel of aspect ratio 10 with uniform heating
on either all four sides or on only the two broad sides. In both cases the
highest wall temperatures occurred in the corners, and the wall temperature
variations resulting from heating on four sides were much greater than the tem-
perature variations for heating on only the two broad sides. A direct analysis
for uniform heating on all four sides was carried out by Cheng (ref. 3) and
evaluated numerically for aspect ratios from 1 to 4. It is significant to note
that the laminar analyses gave wall temperatures that were qualitatively simi-
lar to those reported in'reference 1 for turbulent flow.

Eckert and Irvine (ref. 4) investigated the flow in channels with isosce-
les triangular cross sections and found that, when the core was turbulent,
laminar flow persisted far from the inlet in the apex angle. They also exper-
imented with the heat transfer inside an electrically heated triangular (isos-
celes with 11.48° apex angle) duct (ref. 5) and measured apex wall tempera-
tures that were much higher than at the other two corners. In the experiment,
the heat conduction in the walls reduced the apex temperature below that which
would exist for nonconducting walls. The measured wall temperatures were com-



pared with theoretical values calculated by Eckert, Irvine, and Yen (ref. 6)
for laminar heat transfer in the same shape passage with no conduction in the
walls. Again the laminar analysis gave wall temperatures that were in qualita-
tive agreement with the measured values of the turbulent flow case. The lami-
nar results, however, predicted wall temperatures that were much greater in the
corners.

Baumeister and Reilly studied analytically the heat transfer in the corner
of a rectangular reactor cooling passage for several specific cases using typi-
cal volume heating rates in the fueled and unfueled sections of the fuel plate
and side wall. They took into account conduction in the walls, the variation
in the distance between the edge of the fuel loading and the corner, and the
quality of the brazed bond between the fuel and side plates. They assumed,
however, a constant convective heat-transfer coefficient across each wall sur-
face inside the channel, whereas in reality the coefficient varies in the cor-
ner. With this assumption the lowest wall temperature was generally at the
corners except for the case of a poorly brazed joint. Results were also calcu-
lated for the case of uniform heating in all the walls in order to compare them
with the results from reference 1. For the preceding condition the calculated
wall temperatures were highest in the corners and were considerably greater
than those for the case of heating in only the fueled plates.

This report is concerned with a more detailed study of the influence of
the spacing between the edge of the fuel loading and the corners of a flat rec-
tangular duct on the wall temperature distribution. Also included in the
analysis is the effect of nonuniform heating in the fueled region, which re-
sults from a variation in the neutron flux over the width of the broad sides
and from self shielding. The flux is sometimes higher near the channel corners
due to the reflection of neutrons from adjacent reflector components. Rectan-
gular ducts are treated with aspect ratios of 10 and 20. The flow is taken to
be laminar, and both the flow and heat transfer are assumed to be fully devel-
oped. The heat generation takes place only in the fueled portion of the broad
gsides. The unfueled remainder of the broad sides and the short sides are as-
sumed to be perfectly insulated. The small amounts of gamma and neutron heat-
ing that occur in them are neglected. No simplifying assumptions are made with
reference to the convective heat-transfer coefficient, which varies around the
periphery of the channel. The wall and the local fluid temperatures are com-
puted for various spacings between the edge of the fuel loading and the cor-
ners.

SYMBOLS
a half-length of short sides of rectangular duct
b half-length of broad sides of rectangular duct
C Jacobi matrix associated with  and its decomposition

c half-length of heated width on broad sides

c specific heat of fluid at constant pressure
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unheated width on broad sides between corner and edge of fuel, Db-c
element of area

element of length

thermal conductivity of fluid

number of increments on side of one-fourth of channel cross section

number of increments that are heated, c/Ay (except where used as a summa-
tion index)

amplitude in cosine variation of heat flux

static pressure

heat-transfer rate to fluid per unit channel length
local wall heat addition per unit area

temperature

bulk fluid temperature

local wall temperature

local fluid velocity

average fluid velocity

elgenvectors of C

dimensionless short-side coordinate, x/a

coordinate measured along short side

distance between nodes in x-direction
dimensionless long-side coordinate, y/b

coordinate measured alcong broad side

distance between nodes in y-direction

coordinate measured along duct length

dimensionless distance between nodes in both x- and y-directions

aspect ratio of rectangular duct, b/a



e dimensionless temperature, ,ig_

Q/ 4k
6y dimensionless bulk temperature
GL solution of Laplace equation
ep solution of Poisson equation
1A temperature solution of discrete problem }
Q(m) mth approximation for @ din iterative solution
Ki eigenvalues of C
L absolute viscosity
v outward directed normal to the boundary
o] fluid density
w overrelaxation parameter
Wy optimum value for w

ANATYSIS

The flat rectangular duct under consideration is shown in figure 2 along
with the coordinate system. The principal assumptions are (1) peripheral heat
conduction in the walls is
not accounted for; hence,
the results are for the
limiting case where the
walls are nonconducting;
(2) fluid properties are
constant; (3) both the ve-
locity and temperature dis-
B o tributions are fully devel-

Py 2 oped; and (4) the flow is
laminazxr.
u

The heat generated in
Figure 2, - Coordinate system for thin rectangular channel. the wall is transferred to
the flowing coolant, where
it is simultaneously convected downstream and diffused throughout the cross
section. The resultant fluid and wall temperature distributions depend on the
variation of the cooclant velocity over the cross section; hence, the energy
equation for the temperature distribution cannot be treated until the veloci-
ties are specified. Since the fluid properties are assumed to be independent
of temperature, the velocities can be determined before the energy equation is
considered.

Fueled region,
q - qiy)

Insulated .|
=<
surfaces




Velocity Distribution

For steady fully developed laminar flow the momentum equations reduce to
a single relation between the pressure gradient in the axial direction and the
laminar shear forces:

dp _ d%u  d%u
a - a—'a_) W

!

The solution for u(x,y) is readily available, for example, in Knudsen and Katz
(ref. 7), and consequently, only the final result will be given herein. The
final result has been expressed in terms of dimensionless variables and has
been rearranged into a form especially suitable for machine computations:

0 -
n+l nm i
= -Fen | -Fe
o 32 (-1) + nnX
1 - X5 + —= 3 — cos -
7 n 1+ e~
u n=1,3,5,-+- L
_ﬁ = b Budp Rud ) " i _ . B (2)
2 _ 128 11 - eTH
S YnS n°\l + e~
n=1,3,5,---

Energy Fquation

When energy conservation is applied for steady heat transfer to flow with
constant fluid properties and no viscous dissipation, the governing differen-

tilal equation is
2 2 2
oT <8T+6T+6T> (3)

pc..u =k
P 5z dx%  dyE  dzf

Equation (3) is further simplified by the additional conditions imposed on the
problem. TUnder the assumptions of constant heating per unit length and fully
developed temperature profiles, an overall heat balance leads to the result
that the axial temperature gradient is constant, that is,

2
T @ Pr_

dz pcpaéab’ dz2

Substituting into equation (3) yields

u o Q 7 d%m
BT T Y A 4
— Tab < ? 83,2) (4)

Equation (4), with the velocity distribution equation (2) substituted into

—_— — e



it, is to be solved subject to the appropriate boundary conditions. Since the
velocity and temperature distributions are symmetrical about both center planes
(x = 0, y = 0), only one quarter of the cross section need be treated with sym-
metry imposed along the centerlines. Along the broad sides a heat flux is im-
posed between y = ¢, and the remainder of the broad sides and the short sides
are assumed to be perfectly insulated. The heat-flux variation in the fueled
region is assumed to be of the form

q = ;;Z;j%—ééj (l - P cos %%) (5)
T

where P 1is a positive constant. The g varies from its lowest value at the
center of the broad side (y = 0) to its maximum at y = ¢, which is at the edge
of the fuel loading. Equation (5) has been arranged so that @ is the total
heat input per unit length of channel, that is,

C
Q=4-f q dy
0

When P =0 we have the limiting case of uniform heat flux in the fueled re-
glon so that @Q = 4cq. For the results given in the section DISCUSSION OF
RESULTS the total heat input per unit channel length Q 1is always held con-
stant; consequently, as the width c¢ of the fuel is decreased, the local g
has to be proportionately increased. The boundary conditions for a quarter of
the cross section can be summarized as

\
%’r_zo y=0,b; 0<x<a

oT
=0 x =0; 0

3T Q(l - P cos %g) ‘ ? (6)

o 4ck(l - EP)

kS

IA
<

IN
o’

oT .
= = 0 X a; ¢c<y<bd y

As shown by Cheng (ref. 3), the analytical solution of equation (4) be-
comes quite involved, even when the simpler boundary condition of uniform heat-
ing around the periphery is imposed. The present condition, which has a dis-
continuity in wall heating along the broad side at the edge of the fueled re-
gion, adds additional complexity; and, hence, it was decided to use a combined
numerical and analytical solution procedure.



Superposition of Solutions

The energy equation (4) is written in terms of the dimensionless tempera-

ture 6
v29=§—2-9+£9=—}——_—1f—— "(42)
aXZ ay2 ab 7
Iet 6 be composed of two solutions
6 = 6y + 6 (7)
where 6Op satisfies the Poisson equation
veey = glg% (8)
and or, satisfies the Laplace equation
vee, = 0 (9)

The boundary conditions for equations (8) and (9) have to be specified. Since
equation (8) contains the convective term 5% - the heat addition for the

Op solution will have to equal the total heat Enput to the channel. This is
accomplished by imposing a uniform heat addition g = f% over the entire width
of the broad sides. The short sides are left insulated. The boundary condi-

tions for QP are then

TyP=O y=0,b; 0<x<a

d6p

== =0 x=0; 0<y<b > (8a)
00

TXPz% x=a; 0<y<b J

The conditions on 6 must be such that when they are added to equations
(8a) the conditions in equations (6) are obtained. Hence, for 6y we have
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3 0 ‘ y =0,b; 0<x<a
der,

=0 x=0; 0y <D
o p0sy

9
L) 1 - P cos & r (92)
L 1 2c
S =" % + T x=a; 0Ly<c
(- %)

08
52& = - % x=a; c<y<Lb .J

Since equation (9) does not contain a convective term, the net heat addition
through the broad walls as specified by (9a) must be zero, as is shown by com-
puting the total heat addition along the boundary x = a:

c
P
/ (l - P cos 2C>dy
1 0
o(- &)+
b c(} - EE)

+ (b - c)<— %) =0

7

Hence, the solution to equations (4a) and (6) has been reduced to the sum of a
simpler forced convection solution with uniform heating on the broad walls
(Poisson's eq. (8)) and a pure conduction solution (Laplace's eq. (9)) with
conditions (eq. (9a)) imposed. This method of solution is valid for any arbi-
trary wall heat flux distribution. For each aspect ratio y only one Poisson
temperature distribution is needed, and to this is added a solution of
Laplace's equation to account for each heat flux variation.

Solution for Op

The solution for Op could be obtained analytically in a manner similar

to the one used in reference 3. However, the form of the solution becomes
quite involved; and, hence, it was decided to use a numerical procedure for
this part of the problem. The energy equation was expressed in finite differ-
ence form, which led to a matrix of unknown temperatures at points distributed
over the channel cross section. The matrix was solved with an IBM 704 computer
by using an implicit line iteration technique. The details of the numerical
procedure are given in the appendix. This procedure can also be used to solve
the original problem directly because the conditions in equations (6) are only
very slightly more complicated than those in equations (8a). Some complete
solutions were obtained numerically to serve as a check on the superposition
results. The solution for Op can also be obtained approximately by a varia-

tional method as shown in reference 2, where results are given for an aspect



ratio of 10. Because the ©6p solutions form a basis for the superposition
method that can be applied to problems of arbitrary heat flux, the Op - QP b
values are given in table TI. ?

TABLE I. - DIMENSIONLESS TEMPERATURE DISTRIBUTLONS FOR UNTFORM HEATING OVER ENTIRE WIDTH OF BROAD SIDES

(a) Aspect ratic, b/a, 10

Dirensionless Dimensionless temperature, 8p - 6p
short-side |— . ’
coordinate, Dimensionless long-side coordinate, ¥ = y/b
= a i
X=x o} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.84 10.96 0.98 1.00
0.0 -0.111 -0.108 -0.0989 |-0.0827 | -0.0591 -0.0281 0.00851 | 0.0513 |0.101 | 0.152 |0.170 | 0.178 10.183 [0.185
W -.111 -.108 -.0981 -.0819 -.0583 -.0274 .00928 .0520 .102 .183 171 L1738 .184 .186
.2 -.108 -.108 -.0959 -.0/38 -.0561 -.0251 .0116 .0543 .104 . 155 .173 .180 .186 .188
.3 -.108 -.102 -.0921 -.0759 -.0523 -.0213 L0153 .0580 .107 .158 176 .183 .188 .191
.4 -.0995 -.0964 -.0870 -.0708 -.0472 -.0162 .0204 .0631 .112 .183 .181 .188 .183 .195
.5 -.0931 -.0800 -.0806 ~.0644 -.0408 -.00880 .0268 . 0685 .119 .169 .186 .193 .198 .200
.5 -.0856 -.0825 -.0730 -.056¢ -.0332 -.00226 L0344 .0770 .1l26 .176 .193 .199 .204 .206
7 -.0772 -.0740 -.0645 -.0483 -.0247 +.00624 .0429 .0855 .134 .184 .200 .207 211 .213
.8 -.0679 -.0647 ~-.0553 -.0391 -.0155 +.0155 .0521 . 0947 .143 193 L2098 .215 .219 221
.9 -.0581 -.0550 ~.0455 -.0283 -.0057L +.0252 .0818 .104 L1563 .202 .218 .204 .228 .230
.94 -.0541 -.0510 ~.0416 -.025¢ -.00177 +.0292 .0658 .108 .157 . 206 222 .ee8 .232 .233
.96 ~.0521 ~.0480 -.0386 -.0234 +.000230 +.0312 .0878 .110 .159 .208 .224 .230 .234 .235
.98 -.0501 -.0470 -.0376 -.0214 +.00223 +.0332 .0698 112 .16l .210 . 226 . 232 .236 .237
1.00 -.0481 -.0450 -.0356 -.0194 +.00423 +.0352 .0718 114 .183 212 .228 .234 .238 .239
(v) Aspect ratio, b/a, 20
Dimensionless Dimensionless temperature, 8p ~ QP,b
short-side —
coordinate, Diverstcrles, lon-s de cconmt'nate, Y o= y/b
X = x/a —
o] 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 0.94 0.96 0.98 1.00
0.0 -0.112 -0.108 -0.0987 {-0.0818 ; -0.0582 -0.0279 0.00%10 | 0.0229 [0.103 | 0.160 |0.163 {0.194 |0.202 | 0.207
.1 -.112 -.108 -.0883 -.0814 -.0579 -.0278 .00¢e4s L0533 .104 .160 .183 | 194 .203 .207
2 -.111 ~.107 -.0871 -.0803 -.0c67 -.0C .0106 10 .161 | .184 7o.195 .204 .208
3 -.109 -.10% ~.0953 -.078L ~.0549 ~-.0248 LOlee 107 .163 + .186 197 . 208 .209
4 -.106 -.103 -.0928 -.07e9 -.0e23 -.022¢ . 0150 .10¢@ .166 ' .189 1 199 .207 .211
5 -.103 -.0997 -.089%6 -.0727 -.0492 -.0189 .0l¢€e L1128 .18 .+ .1¢92 .202 .210 .214
8 -.0993 -.0959 -.0858 -.0690 ¢ -.0404 -.0151 .0219 116 ! 173 | .195 . .205 .e13 217
7 ~.0951 -.0917 -.0816 -.0648 | -.0412 -.Cl09 .02¢1 120 177 .+ .199 .209 217 220
.8 -.080% -.0871 -.0770 -.0602 -.0368 -.006352 . 0307 12 } 181 | .204 ' 213 ‘ 221 .204
.9 -.0856 -.0823 -.0722 ~-.05563 -.0318 -.0C1486 . 0356 13C | .186 . 208 .218 229 .229
.94 -.0837 -.0803 -.0702 -.0034 ~.0298 +.000525! .0376 132 ! 188 J 210 220 | .227 231
.98 -.0827 -.0793 -.0692 -.0524 -.0238 +.00152 L0338 133 .189 .211 .22l .ez8 .232 !
.98 -.0817 -.0783 -.0682 -.0514 -.0278 +.000: 2 .0326 134 .190 . .212 ! 222 | .229 .233
1.00 -.0807 -.0773 -.0672 i ~-.0504 -.0268 +.00352 L0205 135, .l¢e1l .213 .223 | .230 .234

Sclution for QL

The solution for QL was found analytically by using a product solution
of the form

mn my
O, = Am cos\ - ¥ cosh 5 « (10)

m=1,2,3, -

This equation already satisfies the zero derivative boundary conditions in the
first two lines of equations (9a). To satisfy the conditions at x = a equa-
tion (10) is differentiated and evaluated at x = a

o0
oe
L - T WY ) o5 | 22
St = Am oy i e sinh 5 (11)

=8, -
m=1,2,3,--"

To obtain the coefficients Ay, the boundary condition is expanded in a Fourier
series. This expansion gives

10



/b cos(mgy)(%l{:a dy = /b A, I% cosz(n%>sinh<m;fa)dy (12)
0] 0

Substituting for (d6p/ox),_, results in

c b
vt
1 - P cosls—
1 (2c> maty) ( l) maty
- & + ( 2_]?) cos(T dy + - ¢jcos T)dy
A
) c
b
_ my mwa, 2 miy
= Am(b) nh(—b ) cos ( 5 )dy

which yields

. (1 me . 1 me

s1n<— - ——>.11 sin ﬂ( + —>

5 (b)sinCmm) _p 2" o) . 2 ©.
mat

° Zﬂ(—zj—'c— - %l) 2:1(21—C + %)
fn = mﬂc( - 2?D>sinh(m—g-a—) (12)

Equation (13) is inserted into equation (10) to obtain er,-

Bulk Temperature
After the solution for 6 has been found, the bulk temperature 6y 1is

computed so that the results can be presented in the general dimensionless form
& - 6y. The bulk temperature is found from the definition

a b .
L/ / —_ 9 dx dy (14)
b u
0 0

From the superposition of soluticns 6 1is given by 6 = QP + GL, and after

this is substituted into equation (14), 6, = GP p t GL p 1s obtained. Then
the desired solution can be written as

6 - 6y = (0p - Opy) + (6 - O p) (15)
The values of Op  were obtained numerically, and values of 6p - QP,b are
2

11



given in table I. The value of 6 remains to be computed, which could be
done by substituting equations (2) and (10) into equation (14) and carrying out
the integration, but a much simpler procedure is as follows. Equation (8) is
solved for u/a and substituted into equation (14). The bulk temperature can

then be written as
=_/:/.e Veop dx dy
b R L P

By using the second form of Green's theorem, equation (16) can be converted to

[

where the quantities 06p/Ov and 06 /Ov are the normal derivatives of 6p
and 6;, and are known over the boundary I from equations (8a) and (9a).

(16)

36p aeL
QL"b = QL r - QP 5_ ds +
T

(17)

Since VZGL = 0 over the-region R, the second integral is zero. Then
1 1-P cos(%%)
ér,p = o(a,y)dy - -3t =y |op(a,¥)dy
of-%)
b
1
+E op(a,y)ay  (18)

C

The first integral is identically zero because of the cosine variation that 6r
has in the y-direction (eq. (10)). It was noted on page 9 that

c b
1l - P cos XZ)
=+ ec/lay + & dy = O
= ) _z_P. Y b y =
Tt
0 c
Because of this relation a constant (- QP b) can be added to 6p 1in equation

can be written as

(18). Then 6, 4

12z



1
oL.,p = % [éP(a:Y) - Op é]dy
o)
. -
1-P cos(%g)
- = I:GP(a,y) - eP,b—_]dy (192)
cll - ?)
0

For fhe special case when P = 0 (i.e., uniform heating in the fueled region),
equation (19a) simplifies to

b
6L,b = & / [ep(a,) - ep,p]ay
0

or in dimensionless form

1 c/b
oL,b = / [ep(1,Y) - 6p play - 2 / [op(2,1) - opplay  (19¢)
0 0

Thus, from equations (19) the QL L can be easily evaluated from the values of
6p - 6py, along the boundary. ?
2

ECL. / I:GP(a,y) - QP,b]dy (19D)
0

Variational Solution

As mentioned before, an approximate soclution for Op - 6p 1, has been
2
given in reference 2 for 7y = 10. This solution can be combined with equation
(10) to provide an approximate closed-form analytical solution. The expression
for 6p from reference z is
1 [11 X4

2 2

I B o _ - 2 .
6p - 6pp = T3 - 0.11703(%X% - 1) 10.291(Y% - 1)

20
2 2 3 4
- 0.038328(%X% - 1)°(¥% - 1)° - 12.05(¥% - 1)° - 4.9697(¥% - 1) ] (20)

Equation (20) can be inserted into equation (19) to determine 61, , for a

given c/b and then combined with equation (10) to yield the solution in
equation (15).

13



Numerical results were carried out for two aspect ratios, 10 and 20. The
important parameter in the problem is the distance between the edge of the fuel
loading and the corner, d = b - c; this distance can be expressed in terms of
the channel spacing as d/Za. This parameter was varied in the range from O
to 0.5 for v = 10 and 20. Results are given for both a uniform heat flux
along the heated region and for a cosine variation with P = 0.20.

DISCUSSION OF RESULTS

In figures 3 and 4 are shown the wall temperature distributions for vari-
ous widths of the unheated areas between the edges of the fuel loading on the
broad sides and the corners. The figures are for two aspect ratios, 10 and 20.
The wall temperature variable that has been plotted is nondimensionalized with
respect to @, the heat input to the channel per unit length in the flow direc-
tion. Hence, when the different curves in figures 3 and 4 are being compared,
they are for the same total heat addition over the channel cross section. The
curves begin_at the center of the heated side, extend across to the corner, and
then extend down to the center of the unheated short side.

When the broad sides are completely heated (d/2a = 0, ¢/b = 1), the wall
temperature is a maximum at the corner. In the corner region the flow veloci-
ties are low; hence, the imposed wall heat flux cannot be removed by convection
as easily as in the regions away from the corners, where the convective veloci-
ties are much higher. As a result, the corner wall temperature rises to com-

.25

c/h di2a

.20 1.00 0

c/b  di2a
100 0

.98 |

.96 .2

.05

Dimensionless temperature, T, - Tph(Qidk)

98 2
94 3
%98 [
|
1.00 | 97 3
-.05| | |
92 a4 |
|
| |
~10— , : 96 .4
: 90 5 {
1
-is Lo eXeWa M0 XX
) 2 .4 .6 .8 1.0 © G 2 4 6 8 100
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(a) Aspect ratio, 10, (b} Aspect ratio, 20,

Figure 3. - Wall temperature distribution for uniform heating in fueled region.
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A0 pensate for the poor convection, and this tem-

cb di2a perature increase enables the heat to diffuse
100 © toward a region of better convection.

351 .

For uniform heating over the entire broad
sides, figure 3 indicates that the aspect ratio
has a relatively small influence on the wall
temperature distributions and the magnitude of
the peak temperature. The insensitivity of the
peak temperature to y 1is possibly due to two
compensating influences. For ducts of high as-
pect ratio, the low-velocity regions adjacent to
the side walls occupy only a small fraction of

Dimensionless temperature, (T,, - Ty)/(Q/dk)

92 .4 the total cross section, and this fraction de-
creases as Yy 1s increased. Consequently, the
\i\go . peak temperature tends to decrease because a

smaller portion of the total heat input has to
be diffused away from the low-velocity region.

88 6 As y increases, however, there is an increase
! in the heat-flow resistance for this diffusion
l e .7 in the direction along the broad walls, and this
| - ! X - x/a resistance tends to increase the peak tempera-
2% 2 4 & 8 100 ture. As a result, the peak temperature remains
Y=yl almost constant in the range of large 7y con-
Figure 4, - Wall temperature distribution sidered here.

with cosine heat flux distribution in

fueled region. Amplitude P, 0,2 . R . .
umdrﬁm,m. P % The most significant result is the sizeable

influence exerted on the wall temperature dis-

tribution by small changes in the location of
the fuel loading. As the edge of the heated region is moved away from the cor-
ner, the fluid in the region near the short side walls receives less energy
directly from the broad walls. This fluid serves as a heat sink that helps
carry away some of the energy from the adjacent heated fluid region. From fig-
ure 3 it is evident that only a small unheated region 1s necessary to form a
sufficiently large heat sink to shift the maximum wall temperature to the cen-
ter of the broad side. When the fueled region is uniformly heated, for both
y = 10 and 20 the temperature along most of the broad side is very nearly con-
stant when there is an intermediate spacing of d/2a = 0.3 Dbetween the heated
area and the corner.

When the heating in the fueled region varies in a cosine fashion with a
local heat flux that is increasing toward the corner, the temperature varia-
tions become more pronounced as shown in figure 4. These results are for an
aspect ratio of 10 and a heat flux at the edge of the fuel loading that is 25
percent greater than at the center of the broad side. Because of the increased
heating in the corner region, it is necessary to move the fuel farther away
from the corner to achieve the most uniform temperature distribution possible.
For no value of d/2a does the wall temperature become as nearly constant as
for the uniform heating case. The peak temperature appears at the center of
the broad side when d/2a 1is greater than 0.65 instead of 0.35 as was the case
with uniform heating in the wall.
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Figures 3 and 4 show that at some places along the wall the value of
T,-T is negative, that is, Ty 1is larger than T, . This negative value may
seem to contradict the fact that heat is flowing from the wall to the fluid;
however, it must be recalled that T, 1is an average value over the entire
cross section, while T, 1is a local value along the wall. For example, in
figure 3(a), for d/Za = 0, the fluid is at a high temperature near the side
walls; this higher temperature raises the average fluid temperature over the
cross section to a value higher than the wall temperature at the center of the
broad side. Since figures 3 and 4 do not give any details of the fluid temper-
ature distribution over the cross section, some sample distributions have been

given in tables I and IT.

Some comments are necessary to relate these results to the problem of
fuel-channel design in a reactor. Two assumptions have been made in the analy-
sis, laminar flow and no heat conduction in the channel wall. These assump-
tions both tend to make the computed temperature variations more extreme than
they would usually be in practice. In most cases the flow would be turbulent,
which results in a more uniform velocity distribution over the cross section
and also produces secondary flows that move cooler fluid from the central core
to the corner regions. These factors along with peripheral conduction in the

TABIE IT. - DIMENSIONIESS TEMPERATURE DISTRIBUTIONS OVER CHANNEL CROSS

SECTION WITH UNIFORM HEATING IN FUELED REGION

(a) Aspect ratio, b/a, 10; dimensionless unheated width on broad side, df2a, 0.1

Dimensionless Dimensionless temperature, (T, - Tb)/(Q/4k)
short-side
coordinate, Dimensionless long-side coordinate, Y = y/b
X = X/a T
6] 0.2 0.4 0.6 0.8 0.9 0.94 0.96 0.98 1,00
0.0 -0,0831 | -0.0735 -0.0451 0.00190 0.0664 0,101 0,113 0.118 0.122 0.123
.2 -.0800 | -.0704 -,0420 . 00499 . 0694 .104 L115 .120 .124 .125
i -.0710 -,0614 ~. 0330 . 0140 .0782 L1122 122 .126 .129 .130
.6 -.0568 | -.0472 -.0189 . 0281 L0921 L1204 L1333 L1386 .137 .138
.8 -.0388 | -.0292 -.000866 , 0461 .110 .141 .149 .149 .147 .146
.9 -.0289 | -.0193 +.00906 L0561 .120 .151 .158 .157 .153 .149
.94 -.0248 | -,0152 +.0131 .0601 .124 L 155 .161 .161 .155 .150
.96 -.0228 | -.0132 +.0151 .0622 .126 .157 .163 163 156 150
.98 -.0208 -.0112 +.0172 . 0642 .128 .159 . 165 . 165 157 .150
1.00 -.0187 -.00911| +,0192 0662 . 130 161 .le7 .167 .158 .150

(b) Aspect ratio, b/a, 10; dimensionless unheated width on broad side, df2a, 0.4

Dimensionless Dimensionless temperature, (T, - Ty)/(Q/4k)
short-side I
coordinate, Dimensionless long-side coordinate, Y = y/b
X = /e 0 0.2 0.4 0.6 0.8 0.9 0.9¢ |o0.96 0.98 | 1.00
0.0 0,142 0.104 -0.00121 -0,0208 -0.0479 -0.0657 |-0,0699 |-0.0705 |[-0.0696 |-0.0691
.2 174 . 137 +.00201L -.0176 ~-,0449 -.0636 -.0684 -.0690 -.0691| -.0886
3 . 268 .231 +.0114 -.00819 -.0356 -.0571 -.0643 -.0664 -.0671| ~-.06870
.6 2416 . 379 +.0262 +,00662 -.0213 -.0465 -.0589 -.0626 -, 0643 -.0647
.8 . 606 . 568 +.0452 +.,0256 -.00292 -.0321 -.0529 -.0591 -.0620( -.0627
.9 <711 .B673 +, 0557 +,0361 +, 00710 ~-.0233 -.0508 -.0579 -, 0613 | -.0621
.94 . 754 . 716 +. 0600 +,0404 +.0113 -.0194 -.0500 -.0576 -.0612 | -.0619
.96 « 7175 738 +,0621 +.0425 +.0134 -.0174 ~-.0498 -.0575 -.0612 | ~.0618
.98 - 7197 . 760 +,0643 +.0447 +,0155 -.0153 -.0497 -.0575 -.0611 | -.0618
1,00 .819 . 781 +.0865 +40469 +40177 -.0131 -.0496 ~,0575 -.0611] -.0€18
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TABLE II. - Concluded. DIMENSIONLESS TEMPERATURE DISTRIBUTIONS OVER CHANNEL CROSS

SECTION WITH UNIFORM HEATING IN FUELED REGION

(c) Aspect ratio, b/a, 20; dimensionless unheated width on broad side, d/2a, 0.1

Dimensionless Dimensionless temperature, (T, - Ty,)/(Q/4k)
short-side
coordinate, Dimensionless long-side coordinate, Y = y/b
X = x/a —]
0 0.2 0.4 0.6 0.8 0.9 0.94 0.96 0.98 1.00
0.0 -0.0805 F0.0711 [-0.0428 +0. 00434 0.0703 0.110 0.126 0.133 0.138 0.142
.2 -.Q0790 -. 0696 ~. 0413 +. 00586 . 0719 .111 .127 . 134 .139 .142
.4 -.0746 ~. 0652 ~. 0369 +. 0103 . 0763 .116 . 131 .138 .142 .145
.8 -.0876 -.0582 -. 0299 +.0172 . 0832 122 . 137 . 144 . 147 . 148
.8 -. 0588 -.0493 -.0210 +.0261 . 0921 131 .146 .152 . 154 .151
.9 -.0539 ~. 0444 -. 0161 +, 0310 . 0970 . 136 . 151 . 158 .158 .153
.94 -.0519 -. 0424 -. 0141 +. 0330 . 0990 .138 .153 . 158 .160 .153
.96 -. 0508 -.0414 -.0131 +. 0340 . 100 .139 . 154 . 159 .161 .153
.98 -.0498 -. 0404 -.0121 +. 0350 .101 .140 .155 . 160 .162 . 153
1.00 ! . 0488 . 0394 L0111 +. 0361 .102 .141 .156 . 181 .163 .153
(d) Aspect ratio, b/a, 20; dimensionless unheated width on broad side, d/Ea, 0.4
Dimensionless Dimensionless temperature, (T, - Tb)/(Q/4k)
short-side [
coordinate, Dimensionless long-side coordinate, Y = y/b
X = x/a _
0 0.2 0.4 0.6 0.8 0.9 0.94 0.96 0.98 1.00
0.0 0. 0180 0.0149 0.00533 | -0.0106 -0.0330 -0.0470 | -0.0533 |-0.0557 |-0.0563 | -0.0550
.2 . 0196 .0l64 . 00688 ~. 00906 -.0314 ~. 0455 -. 0521 -. 0549 -.0558 -. 0547
.4 . 0241 . 0209 .0114 ~. 00454 -.0269 ~. 0412 ~. 0485 -.0524 -. 0544 -. 0539
6 . 0312 . 0281 . 0185 +, 00259 -.0198 ~. 0343 -.0427 -. 0485 -.0526 -. 0528
8 . 0403 . 0372 .0276 +.0117 ~-. 0107 -. 0253 -. 0349 -.0437 -. 0507 -. 0818
.9 . 0453 . 0422 . 0327 +.0167 ~-. 00565 ~. 0204 -. 0304 ~. 0410 -. 0500 -. 0515
.94 . 0474 . 0443 . 0347 +.0188 ~-. 00359 ~. 0183 -.0284 -.0400 -.0499 ~-. 0515
.96 . 0484 . 0453 . 0358 +.0198 -. 00255 ~. 0173 -.0274 -.0394 -. 0498 ~. 0515
.98 . 0495 . 0483 . 0368 +.0209 -.00151 ~. 0162 -. 0264 -. 0389 -.0498 -.0514
1.00 . 0505 0474 . 0378 +.0219 -.000473 ~. 0152 -. 0254 -.0384 -. 0498 -.0514

walls will tend to reduce the temperature peak in the corner for small d/2a.
In most cases the peripheral conduction will be enhanced by the fact that the
side walls are thicker than the fuel plates. To ensure that the temperature
peaking will be small, the fuel can be moved a short distance away from the
corners to a d/2a of about 0.3. There is a danger if d/2a is made too
large that the hot spot will be moved to the center of the broad side and may
become excessive there.

To summarize, the results have shown that the wall temperature distribu-
tions are quite sensitive to the width of the unfueled region d/Za. Even for
the limiting case where the flow i1s laminar and wall conduction is absent, it
is only necessary to remove the fuel a very short distance from the corner to
avoid temperature peaks there. The preceding conclusion is true even when the
heat flux is nonuniform, the maximum near the corner being 25 percent greater
than at the plate center.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, May 28, 1964
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APPENDIX - NUMERICAL METHOD OF SCLVING THE ENERGY EQUATICN

Outlined here is a method for deriving the finite difference equations,
their restatement in matrix notation, and the derivation of the overrelaxation
factor that gives the most rapid convergence of the iterative process. The use
of this overrelaxation method greatly reduces the computational time as com-
pared with more conventional iterative procedures.

The quarter section of the channel cross section is divided by a grid net-
work into N2 rectangular increments where A = (Ax/a) = (4y/b) = 1/N and
nA = (C/b). Then a difference equation is derived for each node of the grid,
resulting in (N + 1)2 equations in
3 (N + 1)2 unknowns. In this appendix the
ATy development of the difference equations is
Ax ’7 / presented for a typical interior point and
Ry 0 a peint at the center of the heated bound-
" jzz/ %ﬁg:%?w’ ary. T@e quationg for the o?her nodes
-~ are derived in a similar fashion. The
- Ay discussion is limited to the case where
1 the heating is uniform in the fueled re-
gion, but the extension to variable heat-
ing is indicated at the end.

o

\

(a) At an interior point.

s 0 ;22;/ 4 Finite Difference Equations
AR ! .
FZJ’ 2 / . F4 . . . .
& In figure 5(a), point O is an inte-
Ry rior node of the mesh with 1, 2, 3, and 4
1 as neighboring nodes; R, 1s the shaded
y=0 rectangular region associated with

point O. The partial differential equa-

) tion (4) is integrated over R, by using

Figure 5. - Typical nodes used in derivation of finite-difference Creen's Theorem. which states in general
2

equations.
/7:7% dx dy = /g—f ds (A1)
R T

where the right side is the line integral of the normal derivative of &
around the boundary I'. Substituting equation (4) into equation (Al) gives

4
1 u 36
% ” _E— ax dy = f E ds (AZ)
RO 1—‘1’1
n=1

Approximating the integrals by

(b) At the center of the heated wall.
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6l B 90)
—:— AN QVANH 8; ds = B I ANy, etc.
R u

the finite difference analog of equation (A2) can be placed in the form

:4

Y20y + 65) + 0, + 6, - 8(u /8)
[¢]
8, = - 5 (A3a)
2(1 + v*)

In figure 5(b), point O is the corner node of the network at the center of
the heated region. The procedure Jjust outlined is applied except that the
boundary conditions are used on P2 and PS. For uniform heat flux (P = 0)
the boundary conditions are

‘l o Ml _1
v r - ov Tz
2

These conditions result in the relation

6, = (A3D)
1+ 7y
Matrix Notation

The equations for all the nodes can be written concisely 'in matrix nota-
tion as

06 =G + U (A4)

where Q is a partitioned matrix of order (N + 1)2

A -B 0 . 0 0
B 24 -B - O O
0] -B 2A . 0 0]
Q= | (A5)
0 0 0 2A -B
0 0 0] -B A

with submatrices of order N + 1

19



20

0 0
-v® 2(y? + 1) -v? 0 0
0 -7* 2(v% + 1) - 0 0
0 0 0 . 2(y% + 1) -y2
0 0 0 2 (v2 + 1)
B =diag (1, 2, 2, - » -, 2, 1) (A5D)

The components in G arise from the boundary conditions such as the term Y/n
in equation (A3b), while the terms in U come from the left side of equation

(4), which gives terms such as Y Aﬁuo/ﬁ in equation (A3a). The terms G
and U are partitioned conformably with Q, which gives

€1 u1
82 u2
G = U = (A6)
EN-+1 U1
vhere g; and u; are (N + 1) X1 and are given as follows
™
T/n
0
€1 = 8pnl <
0
g; = 28 2<1i<n r (A7a)
0
0
gi = i>n+1
0
/




0 N
ulN A,0]/3
ul (¥ - 1)a,0] /T
u, = -AZY
ula,0]
%‘-u[0,0]/’E
0 > (ATb)
ulN A, (1 - 1)Al/m
ulN - 1)A, (1 - 1)A] /T
ui:"ZAZY e e e e e e e e csicsh
ula, (i - 1)a]l/w
 ulo,(i - 1)al/a
Uy = 2 J

The matrix Q receives its particular form by numbering the mesh points from
top to bottom in columns starting with the first column at the left of the
rectangle.
ITterative Procedure
For the iterative procedure it is necessary to decompose ( as follows:
0=o-8 - 87 (48)
(the superscript T denoting transpose) where
A = diag(A, 24, - . ., 24, A) (A9a)

and
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B 0O O 0O 0 o0
0O B 0 O 0 0
Az = e e e (A9Dp)
0 0 o0 O 0 o0
0O 0 o0 B 0 O
0O 0 © O B O

The iterative scheme is defined by

Sl D) — w[gelm ) + gTelm) + 6+ U]+ (1 - w) oo™ (A10)

which is applied as follows:

(1) ¢ +U and Qﬁm), the mt iterate for 6 at all the mesh points

(g(o) is an initial guess), are given.
(2) W is computed from W = Bo(wL) o gTe(m) 4o 1y,
(3) Then g(m+l) = oW + (1 - w)_q(m).

The appearance of Qﬁm+l) in the right side of the equation in step (2) causes
no difficulty since % is strictly lower triangular by blocks. The iteration
is carried out one column after the other from left to right, each column of

0's being computed simultaneously; hence, this iteration process is called the

Tine method.

Overrelaxation Factor

The value of  giving the fastest convergence of the iterative process
is usually given by

oy = 2 . (a11)

1+ V1 - 0°

where C = 54'1(5? + #T) and o = o(C) is the spectral radius of C (ref. 8).
In the present case, however, C has eigenvalues *1 so that the iterative
process would fail to converge for  calculated from p(C).

The occurrence of the eigenvalue +1 is a result of the fact that solutions
of Neumann problems are determined only up to an additive constant. The value
-1 was introduced by the decomposition of Q. Since C is two-cyclic (ref. 9),
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g -

deflation of C by the eigenvalues *1 yields a matrix C' +that is again two-
cyclic and to which the Young-Frankel theory of successive overrelaxation may
be applied.

If %l’ %2, %5, - - « are the eigenvalues of C,
L= N = %2 > [Nl = [Ma] > [2s] - - -
Then 0, O, Az, Ay, + - - are the eigenvalues of C'. Let Vi, V5, - + + be

the associated eigenvectors, that is, CV; = AiV;. Components of the error may
be lgnored along V1, since this may be regarded as the additive constant re-
ferred to previouslyi components of the error may be ignored along Vo also

since averaging Q(m with Cg(m) will eliminate this error. The computation
of w,, therefore, is based upon Az that is,

2
1+ Vi - gl

The eigenvalues of C are given by

cog LK = L)

N

Y2[}os LQ_%EilE - l] -1

U_)-b:

cos(n/N) and

Il

if N 1is sufficiently large, Az

2
®o = T+ sin(st/N)

Numerical experiments verified the optimum character of this number.

Remarks

Barly in the solution it was noticed that the residuals (e.g., for eq.

(A3b) the residual is defined to be 6, - 5 ) after several itera-
i+

tions achieved a constant value throughout the mesh and remained at that value

for every iteration thereafter; however, the value of Q(m) kept increasing.
The reason for the drifting was that the U wused to normalize the wu at each
node was evaluated by using the series in the denominator of equation (2),
which is obtained from an analytical integration of the velocity over the cross
section. The use of the series form of uU introduces an inconsistency in the
system of equations (A4) in which integrals have been approximated by the
trapezoidal rule; hence, by using the trapezoidal rule to evaluate U, the
drifting was eliminated.
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When passing from the constant heat flux case to the cosine variation, the
boundary condition corresponding to equation (5) must be written by using the
trapezoidal rule to compute the normalizing factor in the denominator, that is,

x=a,0<cy<ec

whose limit as A approaches O is the boundary condition in equations (6).
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